

Classification of 1	ypica	li Loa	las	
Load Type	%Pf	%S _{PQ}	%Z	%
Resistance heaters, water heaters, ranges	100	0	50	50
Heat pumps, air conditioning, refrigeration	80	15-35	20-40	45
Clothes dryers	99	0	0	100
Televisions	77	0	0	100
Incandescent lighting	100	45	35	20
Fluorescent lighting	90	0	50	50
Pumps, fans, motors	87	40	40	20
Arc furnace	72	0	30	70
Large industrial motors	90	60	40	0
Large agricultural water pumps	84	0	75	25
Power plant auxiliaries	80	40	40	20

Power System Engineering, Inc.					
Volt/VAR and CVR					
A solid Volt/VAR scheme can improve or alleviate many of these.					
Pain Points	Cause		Severity	VAR	CVR
PF Penalties	G&T charges for Lagging Power	\$\$	Penalties	$\checkmark\checkmark$	
Lost Capacity	Excess current due to inductive loads uses up line capacity.	\$	10-20% Excess Current	√√	\checkmark
Line Losses	Resistance in wire uses Real power	\$	20-40% Excess Line Losses	√ √	✓
Voltage Drop	Excess current and line loss leads to excess voltage drop	\$	10-20% Excess Voltage Drop	\checkmark	✓
Lost Generation	Customers charged for W but Generation covers VA	\$\$\$	Unbilled Generation	√ √	
Peak Penalties	Excess energy usage during coincident peak periods	\$\$\$	Peak Rates	\checkmark	√√
© 2013 Power System Engineering, Inc. Confidential and Proprietary. Not for reproduction or distribution.					

WINTER	Change in Voltage	Change in Voltage	Percent Fnergy	Percent
	(120V Base)	(%, 120V Base)	Reduction ¹	Reduction
aton Substation	2.04	1.7%	1.3%	0.16%
From EPRI Study ²			0.9%	0.07%
Oriskany Falls Substation	2.05	1.7%	1.3%	0.16%
From EPRI Study ²			1.1%	0.13%
enner Substation	1.84	1.5%	1.2%	0.14%

Power System Engineering, Inc.				
	Solution Steps			
Implement a Volt/VAR and CVR Program in phases				
Step	Description	Phase	Benefit	
1	Capacitors in substation	Traditional Starting Point	Avoid PF penalties	
	LTC on substation transformer		Periodic adjust substation voltage	
	Substation feeder regulators		Independent Feeder adjustment	
	Stand-alone fixed & switched feeder capacitors		Basic line loss reduction & voltage/capacity improvement	
	Stand-alone feeder regulators		Basic maintenance of voltage	
2	Optimize VAR flows with addt'l fixed/switched caps	Integrated	Advanced line loss reduction & voltage/capacity improvement	
	Optimize voltage profiles	Volt/VAR Control	Advanced control of voltage profiles and system operating efficiency	

	Power System Engineering, Inc.				
Solution Steps (continued)					
Implement a Volt/VAR and CVR Program in phases					
Step	Description	Phase	Benefit		
3	Manual SCADA control of capacitors & regulators	Basic CVR	CVR for peak demand reduction		
	LDC settings in regulators not SCADA controlled		CVR for peak demand and energy reduction		
	Local capacitor controls for those not SCADA controlled		CVR for peak demand and energy reduction		
4	Integrated monitoring with AMI & Feeder DA equipment	Advanced	Continuous feedback for real-time decision-making		
	Dynamic CVR through DMS or other DA control software	CVR	Continuous CVR for highest optimization		
	© 2013 Power System Envineering. Inc. Confidential and Pronrietary. Not for reproduction or distribution.				

		Power System Eng	ineering, Inc. PSE
	Р	ossible Solution	
ltage Level	123.0		
٨٥	121.0	120.0	121.0 120.0 119.0
		118.0	
	<u>Before voltage reduction:</u> Setpoint = 122.0 V Actual Voltage = 121.5 V On lower side of band	During voltage reduction (Step 1): Setpoint = 119.0 V Voltage above upper band, so 3 tap downs issued Actual Voltage = 119.25 V (asuming 0.75 V/tap) On upper side of band	During voltage reduction (Step 2): Setpoint = 120.0 V Voltage in band, so no more taps issued Actual Voltage = 119.25 V On lower side of band
	© 2013 Power System E.	ingineering, Inc. Confidential and Proprietary. Not for reproduction or e	distribution. 48

	Power System Engineering, Inc.
Thank You!	Power System Engineering, Inc. Name: Jeff Triplett, P.E. Title: Utility System Consultant Direct: (740) 568-9220 x10 Mobile: (740) 525-0070 Email: triplettj@powersystem.org Website: www.powersystem.org
© 2013 Power System Engineering, Inc	. Confidential and Proprietary. Not for reproduction or distribution. 61