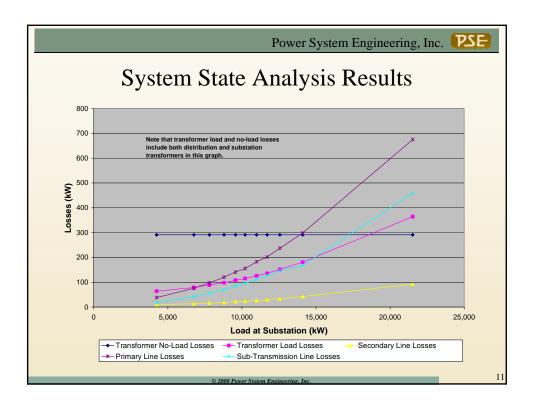
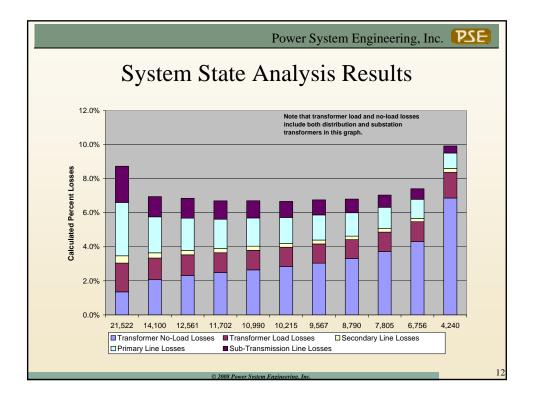
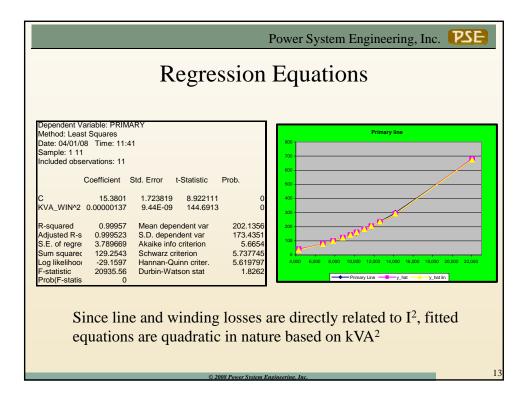
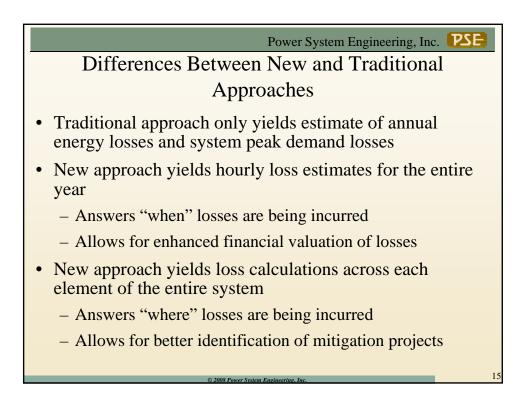
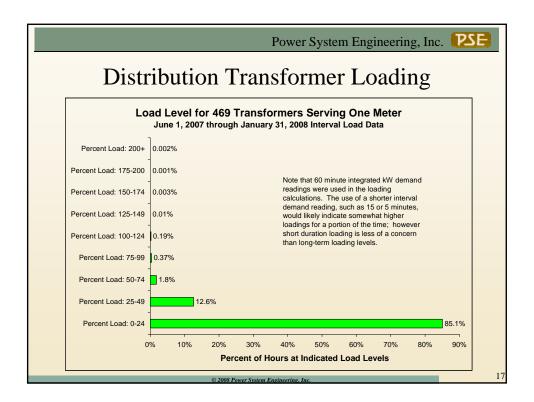

Power System Engined	ering, Inc.			
Case Study Electric Cooperative				
• Background (As of end of 2007)				
– Number of Delivery Points =	8			
– Number of Distribution Subs =	12			
– Miles of Sub-Transmission (34.5 kV) =	85			
- Miles of Distribution $(12.47/7.2 \text{ kV}) =$	1,460			
– Miles of Secondary =	501			
– Number of Consumers =	18,244			
• 93% of consumers and 85% of sales are residential				
• Average system losses ~ 8 to 9% (based on Form 7 data)				
• Fully deployed TWACS AMI System				
© 2008 Power System Engineering, Inc.	5			

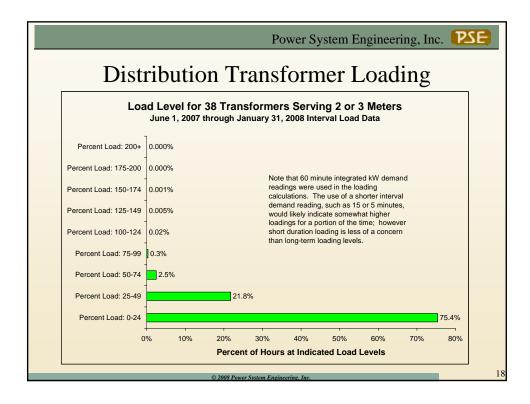

Sources of Losses				
SYSTEM COMPONENT	FUNCTION OF	NOTES		
Sub-transmission Lines (34.5 kV)	I ² R	Higher operating voltages yield lower currents / losses		
Substation Power Transformers				
No-Load (core) losses	Voltage	Magnetizing transformer core		
Load (winding) losses	I^2R	Greater than no-load losses @ rated capacity		
Auxiliary losses	I ² R	Primarily from fans - small compared to windings		
Voltage regulators		Located at Subs and on Dist Line		
No-Load (core) losses	Voltage	Magnetizing transformer core		
Load (winding) losses	I ² R	Affected by amount of time and distance off neutral		
Distribution lines (12.47/7.2 kV)	I ² R	Three-phase, vee-phase, and single-phase lines		
Distribution transformers				
No-Load (core) losses	Voltage	Magnetizing transformer core		
Load (winding) losses	I ² R	Greater than no-load losses @ rated capacity		
Secondary / service conductors	I ² R	End of the system. Therefore need to consider effects of increased losses at		
		this level causing increased current and losses on all other components		
Consumer Metering		Defective meters, miswired meters, meter reading errors, data entry errors, theft.		

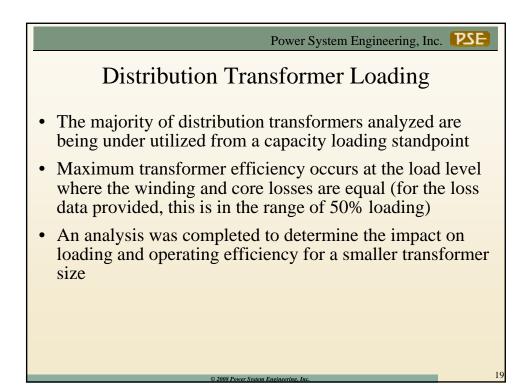

	Available Da	ata
SYSTEM COMPONENT	AVAILABLE DATA: BEST CASE	AVAILABLE DATA: FOR CASE STUDY
Sub-transmission Lines (34.5 kV)	Hourly kW and kVAR data	No specific data
Substation Power Transformers No-Load (core) losses Load (winding) losses Auxiliary losses	Hourly kW and kVAR data	Hourly kW and kVAR for delivery points. Peak demand kW and kVAR, monthly kWh For distribution substations.
Voltage regulators No-Load (core) losses Load (winding) losses	Hourly kW and kVAR data (need to consider metering accuracy)	Peak demand kW and kVAR Monthly kWh
Distribution lines (12.47/7.2 kV)	Hourly kW and kVAR data from a SCADA system for each feeder	No specific data
Distribution transformers No-Load (core) losses Load (winding) losses	AMR system interval load data and voltages for each consumer	Monthly kWh billings for every consumer AMI Interval load data for a sample of consumers
Secondary / service conductors	AMR system interval load data and voltages for each consumer	Monthly kWh billings for every consumer AMI Interval load data for a sample of consumers
Consumer Metering	-	-

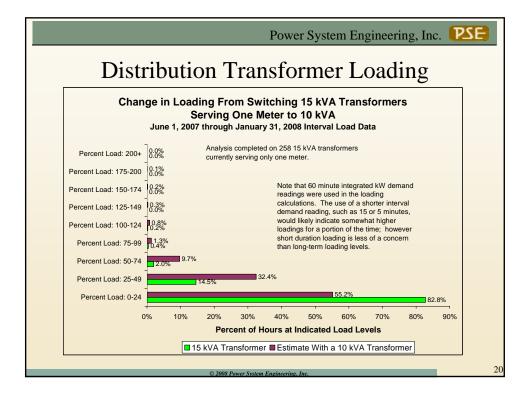


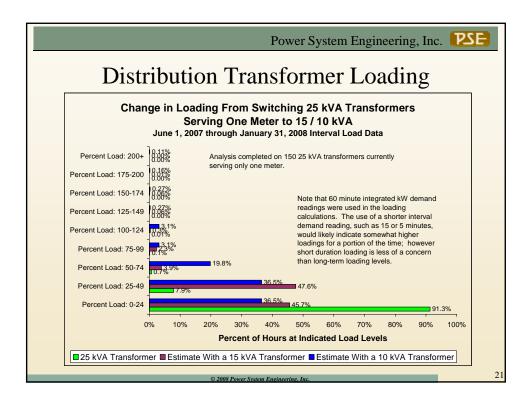


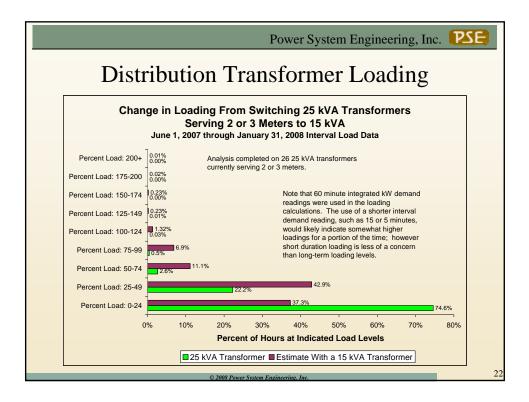


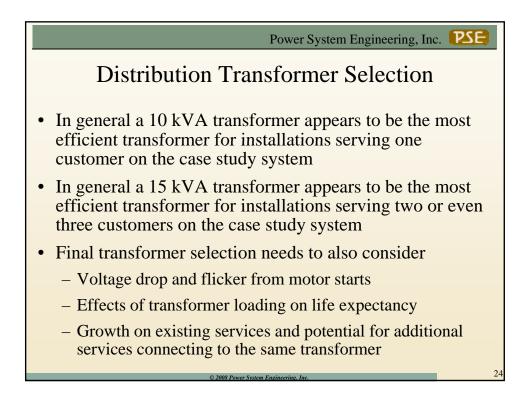


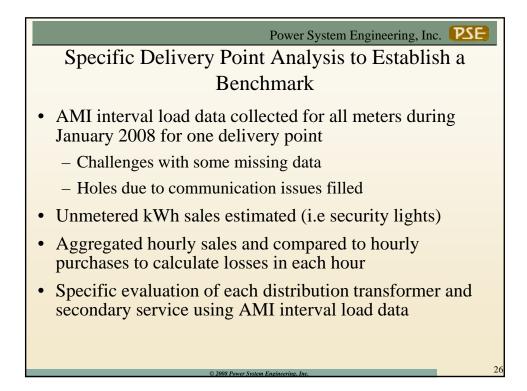

	itional A	pproach	es Con	npariso
Calendar Year 2007	Sub-Transm. Losses	Sub Xfrmr No-Load Losses	Sub Xfrmr Load Losses	Primary Losses
Traditional Loss Analysis kWh Percent Loss	1,830,745 0.66%	1,377,930 0.50%	803,388 0.29%	4,574,573 1.65%
New Approach kWh Percent Loss	1,529,257 0.55%	1,377,948 0.50%	734,985 0.26%	4,551,145 1.64%
Difference kWh Percent Loss	-301,489 -0.11%	18 0.00%	-68,404 -0.02%	-23,428 -0.01%
Calendar Year 2007	Dist Xfrmr No-Load Losses	Dist Xfrmr Load Losses	Secondary Losses*	Total Loss Estimate
Traditional Loss Analysis kWh Percent Loss	7,025,170 2.53%	883,789 0.32%	1,533,650 0.55%	18,029,246 6.49%
New Approach kWh Percent Loss	7,032,129 2.53%	986,422 0.36%	817,932 0.29%	17,029,818 6.13%
Difference kWh Percent Loss	6,959 0.00%	102,633 0.04%	-715,718 -0.26%	-999,428 -0.36%

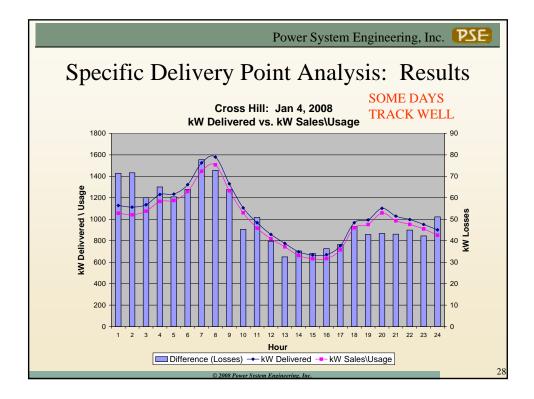


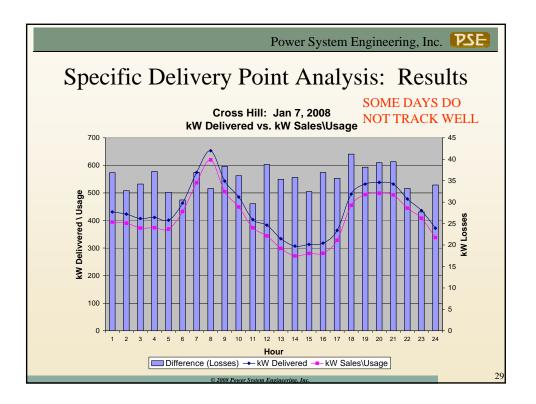

Power System Engineering, Inc.					
Distribution Transformer / Secondary Analysis					
• Analysis completed for those meters with available AMI data for June '07 Jan '08					
– 469 transformers ser	– 469 transformers serving one meter				
– 70 transformers serving two meters					
– 6 transformers serving three meters					
	o dansformers serving direc moters				
Calculated Percent Loss	Dist Xfrmr Load Loss	Dist Xfrmr No-Load Loss	Secondary Loss	Total Loss	
1 Meter/Transformer - sample	0.38%	2.46%	0.37%	3.20%	
2 or 3 Meters/Transformer - sample 0.36% 1.57% 0.32% 2.25%					
New Approach - system wide					
© 20	008 Power System Engineerin	ng, Inc.		_	10

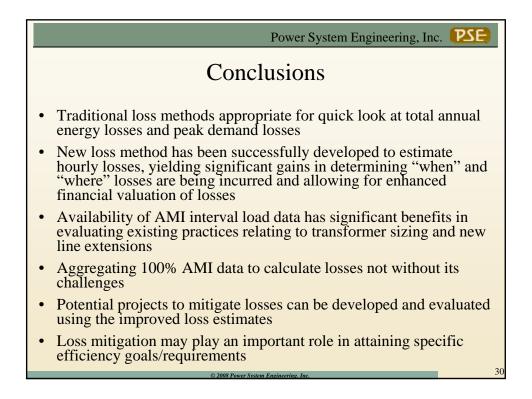







	Ро	wer Syster	n Engine	eering, Iı	nc. PSE
Distribution T	Distribution Transformer Selection				
Energy Losses June '07 - Jan '08	Existing	Reduced Transformer	Diffo	rence	
545 Meters	Installations	Size	kWh	%	
Transformer No-Load Losses Transformer Load Losses Secondary Losses Total Losses	148,473 23,786 22,779 195,038	117,326 40,737 22,779 180,842	(31,148) 16,952 0 (14,196)	-21.0% 71.3% 0.0% -7.3%	
 Selecting smalle overall energy l demand losses. 					
	Economics do not generally justify changing out existing transformers based on loss savings.				


Power System Engineering, Inc.
Additional Thoughts Relating to Distribution
Transformers
• DOE published rule creating higher efficiency levels for all new distribution transformers starting 2010
• Existing transformer designs will need to be evaluated to determine compliance
• Opportunity to develop new transformer designs with energy and demand losses in mind
 Compliance based on <u>total</u> transformer efficiency at defined temperatures and 50% transformer loading
 No-load and load losses can be designed to maximize loss savings
• For example, if larger transformers are needed because of flicker concerns, transformer designs should minimize no-load losses to the extent practical and not worry as much about load loss component
• Important to continue evaluating transformer purchases based on "Total Ownership Cost" approach



•		Detailed Calcs	New Loss	is: Re	1
		For Every Cust (kWh)	Method (kWh)	Difference	
	Transformer No-Load Losses	13,361	13,318	-0.3%	
	Transformer Load Losses	2,228	2,000	-10.2%	
	Secondary Losses ¹	2,987	1,518	-49.2%	
	Sub-Total	18,576	16,836	-9.4%	
	Total Calculated Losses	35,317	20,385	-42.3%	
	Primary Line Losses ²	16,741	3,549	-78.8%	
	Notes: ¹ Windmil model appears to be ² Primary line losses in column calculated losses from calcu	1 are estimated by	subtracting the	total	

Power System Engineering, Inc.

Power System Engineering, Inc.					
Questions?					
Power System Engineering, Inc.					
	Name: Jeffrey M. Triplett, P.E.				
	Title: Utility System Consultant				
Thank You!	Direct: 740-568-9220				
	Mobile: 740-525-0070				
	Email: triplettj@powersystem.org				
	Website: www.powersystem.org				
	31				