Substation Modernization

2012 Automation Webinar Series

Jim Weikert
Power System Engineering, Inc.
www.powersystem.org
March 6, 2012
1 Starting Points
2 Why Modernize?
3 Phased Approach
4 Communication & Security
5 Next Steps
Starting Points

Utilities are coming from many different perspectives – No one right answer.

<table>
<thead>
<tr>
<th>Category</th>
<th>States</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sizes</td>
<td>Meters: 5,000 to 100,000+</td>
<td>Cost justification varies.</td>
</tr>
<tr>
<td></td>
<td>Substations: 5 to 200+</td>
<td>Complexity increases with size.</td>
</tr>
<tr>
<td>Structure</td>
<td>Cooperative, Municipal, G&T</td>
<td>Different process for justifying expenditure & investment.</td>
</tr>
<tr>
<td></td>
<td>Investor-owned Utility</td>
<td></td>
</tr>
<tr>
<td>Territory</td>
<td>Rural with locations spread</td>
<td>Impacts some of the benefits of automation.</td>
</tr>
<tr>
<td></td>
<td>widely</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Urban with compact service</td>
<td></td>
</tr>
<tr>
<td></td>
<td>territory</td>
<td></td>
</tr>
<tr>
<td>Services</td>
<td>Municipals add gas and water systems to any automation plan.</td>
<td></td>
</tr>
<tr>
<td>Focus</td>
<td>Reliability</td>
<td>Need to make sure benefits accomplish your goals.</td>
</tr>
<tr>
<td></td>
<td>Reduced Cost of Service</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Personnel stretched thin</td>
<td></td>
</tr>
</tbody>
</table>
Starting Point – Automation Hybrid

SCADA Master
- Central Server
- Central Workstation
- Legacy Server Hardware
- Proprietary Database
- Leased-line modems

Substation Automation
- Legacy RTU – serial proprietary protocol
- New feeder relays
- Regulator control – 10 years old, communicates for proprietary protocol
- Substation also contains a Load Management or AMI interface unit
Role of the RTU

Legacy
- **Capture signals** (analog & digital) from transducers.
- **Data gathering** without decision making.
- **Vendor specific** protocols
- Gather data from serial devices.
- **Constrained** by limited communications.
- **Limited history**, sequence of events.

Modern
- **One of many intelligent devices.**
- **Data gathering** blended with decision making.
- **Standard (DNP3, 61850) protocols.**
- Gather data from legacy transducers & devices.
- **Enabled** by improved communications.
- **Greater history**, sequence of events.
Starting Point – Multi-generation IEDs

Faced with decision on whether to invest in newer IEDs

<table>
<thead>
<tr>
<th>Status</th>
<th>Generation 1</th>
<th>Generation 2</th>
<th>Generation 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Obsolete</td>
<td>Supported</td>
<td>Newest platform</td>
</tr>
<tr>
<td>Protocols</td>
<td>Proprietary serial</td>
<td>DNP3 Serial & IP</td>
<td>DNP3 Serial & IP</td>
</tr>
<tr>
<td>Settings</td>
<td>Select pre-defined Time-current curves</td>
<td>User customized logic, Time-current curve editing</td>
<td>Advanced editing of Time-current curves</td>
</tr>
<tr>
<td>Metering</td>
<td>Current in 5 or 15 minute integrals.</td>
<td>I&V, power, energy, PF, Frequency, harmonic</td>
<td>I&V, power, energy, PF, Frequency, harmonic</td>
</tr>
<tr>
<td>Load Profiling</td>
<td>Currents for last 24hr. in 15 min. intervals</td>
<td>Configurable data and many intervals, days of info.</td>
<td>Configurable data and many intervals, days of info.</td>
</tr>
<tr>
<td>Event Recorder</td>
<td>Current for last 25 events</td>
<td>Many event types, Last 500 events</td>
<td>Many event types, Last 500 events</td>
</tr>
<tr>
<td>Oscillography</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>General</td>
<td>Functional, yet … No longer supported Proprietary Basic Configurability Limited information</td>
<td>Functional Well supported Standards-based Flexible Lots of information</td>
<td></td>
</tr>
</tbody>
</table>
Starting Point – Standards & Protocols

Standards Based
• DNP3.0
• IEC-61850
• Modbus TCP

Proprietary
• Valmet Tejas
• Telegyr 8979
• PG&E 2179

Why does the protocol matter?

– Manufacturer Flexibility
 • Support from the manufacturer, staying in business
 • Breadth of product types and features

– Improvements in protocol
 • Communication types (Ethernet, report by exception, …)
 • Security
1 Starting Points
2 Why Modernize?
3 Phased Approach
4 Communication & Security
5 Next Steps
Modern SCADA Architecture

- Intelligent devices remotely accessible
- Bi-directional data flow
- High level of redundancy

Fiber Backbone

Substation

SCADA Master

Workstation

Redundant Master

DA/AMI Collection Point

Intelligent devices remotely accessible makes sense as part of a bigger picture.
Modern SCADA Masters

SCADA System Components

- **Software:** License (features) and maintenance
- **Hardware:** Servers, workstations, network, security
- **Engineering:** Database and screen design, site testing
- **Training:** User, upgrade and modification

Representative Cost Break-down

Features to consider:

- Redundant modular hardware
- Firewalls for secure remote access
- Open database for 3rd party integration
- Historian, trending and graphing
- Tagging for secure lockout
- User authentication for access levels
- Web access for infrequent users
- ICCP, MultiSpeak & protocol interfaces
- Security logging for NERC CIP
- Advanced applications
Getting more out of Automation

• Extend Asset Life
 – Transformer upgrades or added substations are expensive
 – Actual peak loading provides the best picture on upgrading

• Enable Restoration
 – Temporarily run closer to maximum only with real-time data

• Update engineering models
 – Assumption: residential vs. industrial vs. commercial load mix
 – Measure power factor variance with time, day and season
 – Measure energy change with voltage reduction

• Better feeder loading data
 – Measure individual feeder loading rather than whole bus
 – Measure feeder power factor for better compensation

Better technical information allows better business decisions.
SCADA Benefits Many

<table>
<thead>
<tr>
<th>Function</th>
<th>Legacy Systems</th>
<th>Modern SCADA</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer Service</td>
<td>• Customer reported issues</td>
<td>• Continuous monitoring</td>
<td>• Better customer service</td>
</tr>
<tr>
<td></td>
<td>• Continuous monitoring</td>
<td>• Detect before call</td>
<td></td>
</tr>
<tr>
<td>Operations & Dispatch</td>
<td>• Drive through affected area to suspected source</td>
<td>• Field data on location of fault</td>
<td>• More quickly locate source of outage</td>
</tr>
<tr>
<td></td>
<td>• Drive through affected area to suspected source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td>• Travel to every site</td>
<td>• Gather remotely</td>
<td>• Less drive time</td>
</tr>
<tr>
<td></td>
<td>• No info between visits</td>
<td>• Travel when needed</td>
<td>• More information</td>
</tr>
<tr>
<td></td>
<td>• Travel to every site</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Engineering</td>
<td>• Limited system data</td>
<td>• Real-time historical information and settings.</td>
<td>• Verify system models with actual load data</td>
</tr>
<tr>
<td></td>
<td>• Tough to gather data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Engineers</td>
<td>• Meters provide some data within substation.</td>
<td>• Substation HMI shows complete picture</td>
<td>• See system status and control system from field</td>
</tr>
<tr>
<td></td>
<td>• Meters provide some data within substation.</td>
<td>• Local control</td>
<td></td>
</tr>
</tbody>
</table>

Information helps all departments work more efficiently.
Maintaining your system

• Many utilities can no longer maintain their system
 – Proprietary implementations: can’t update themselves
 – RTUs & SCADA Masters no longer supported

• Newer SCADA systems are easier to maintain
 – Friendlier graphical interfaces, easier screen creation
 – Templates for common IEDs
 – Easier to add communication channels
 – Alarm management standardly supported
 – Many trends and graphs are built-in or easily modified

If your system can’t grow, your investment has limited value long-term.
Benefits of Standard Protocols – DNP3

• DNP3 Attributes
 – **Open** definition: everyone can implement, interoperate
 – **Flexible**: Binary, analog, counters, data files
 – **Reliable**: Error checking & retransmission built in
 – Support all **media**: Serial & Ethernet / Fiber capable
 – **Prioritized**:
 • Static data & Class 1, 2, & 3 event data
 • Polled & Unsolicited Messaging
 – **Time Stamped**: Recreate events
 – **Security** Enhancements: DNP3 Secure Authentication

Allows vendor independence, enhancements and operational benefit.
Voltage Control Program

Substation Automation forms basis for voltage control

- **Benefits**
 - Coincident peak price reduction
 - Energy Reduction

- **Components of a voltage control program**
 - Regulation (Substation and Feeder)
 - Measurement (Meters and Regulators)
 - Control (SCADA or Integrated Volt/VAR Application)

- **Considerations**
 - Seasonal / Daily Load
 - Metering latency
 - Dynamic network
Switching Program

Substation Automation forms basis for switching

• Benefits
 – Increased Reliability (reduced SAIDI)

• Implementation Options
 – Central / Distributed Control
 – Central visibility in real time

• Complexities
 – Maintaining communications
 – Restore to normal state after repair
 – Modeling a dynamic load
 – Switching voltage control
Modernization Benefits

1. **Integration**: SCADA System pulls together many pieces for greater benefit.

2. **Fiscal**: Better information allows better business decisions.

3. **Operational**: Access to information helps all departments.

4. **Maintainability**: Use and expand system

5. **Standards**: Protocols
 a) Vendor independence.
 b) Evolve to improve security and operational benefits.

6. **Platform**: Voltage control and switching programs allow for cost reduction and reliability increases.
Agenda

1 Starting Points
2 Why Modernize?
3 Phased Approach
4 Communication & Security
5 Next Steps
Levels of Automation

<table>
<thead>
<tr>
<th>Component</th>
<th>Basic</th>
<th>Median</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCADA Master</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardware</td>
<td>Single PC</td>
<td>Single Rack Server</td>
<td>Redundant Rack Servers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single PC Workstation</td>
<td>Multiple PC Workstations</td>
</tr>
<tr>
<td>Applications</td>
<td>Monitoring</td>
<td>Control, Alarm Mgmt., Historian & Trending</td>
<td>Control, Alarm, Historian, Switching, IVVC,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substation Automation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTU/Controller</td>
<td>RTU to I/O</td>
<td>Data Concentrator</td>
<td>Minimal – IED direct</td>
</tr>
<tr>
<td>Feeder Protection</td>
<td>Hydraulic</td>
<td>IED Relays</td>
<td>IED Relays</td>
</tr>
<tr>
<td>Feeder Capacitors</td>
<td></td>
<td>Fixed</td>
<td>IED Controller</td>
</tr>
<tr>
<td>Regulation</td>
<td></td>
<td>IED Bus Control or LTC</td>
<td>IED Feeder Controller</td>
</tr>
<tr>
<td>Transformer</td>
<td>Unmonitored</td>
<td>I/O Alarms</td>
<td>IED Monitor</td>
</tr>
<tr>
<td>High Side Protection</td>
<td></td>
<td>IED Relays</td>
<td>IED Relays</td>
</tr>
<tr>
<td>Substation Support</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substation SCADA</td>
<td></td>
<td>HMI – Local Devices</td>
<td>Full Workstation</td>
</tr>
<tr>
<td>Video</td>
<td></td>
<td></td>
<td>IP Camera</td>
</tr>
<tr>
<td>Local Network</td>
<td></td>
<td></td>
<td>IP Phone, Wireless LAN</td>
</tr>
</tbody>
</table>
Phased Approach

• Every utility has valuable assets
 – **IEDs**: Relays, regulator controls, meters.
 – **Communications**:
 • **Fiber (Partial) Deployment**: Municipalities with community fiber programs
 • **Wireless assets**: Including towers
 – **Other Systems**: that can be integrated with SCADA
 • Automated Metering (AMI/AMR)
 • Outage Management System (OMS)
 • Geographic Information System (GIS)

Maximize the benefit of what you have toward the programs you need.
Substation SCADA – SCADA Lite

- Substation communication processor hosts SCADA directly.
- Lower cost of equipment and deployment.
- Visibility to what’s going on locally
- Limited scalability and integration with other applications: AMI, CVR, OMS.
- Local substation control, limited system-wide control.

Local visibility at low cost and complexity.
Data Concentrators & RTUs

• **Trends**
 - Legacy protocols going to DNP3
 - Serial going to Ethernet
 - Heavily I/O monitoring going to IEDs
 - Data concentrators used frequently
 - Increased intelligence, HMI capability
 - PLCs are increasingly finding use.

• **Features of modern platforms**
 - Intelligence – logic and decision making
 - Great at integrating diverse protocols.
 - HMI in some instances (pseudo-SCADA)
 - Security embedded – firewalls, etc.
Substation Migration Example: Starting

SCADA Master
- Central Server
- Central Workstation
- Legacy Server Hardware
- Proprietary Database
- Leased-line modems

Substation Automation
- Legacy RTU – serial proprietary protocol
- New feeder relays
- Regulator control – 10 years old, communicates for proprietary protocol
- Substation also contains a Load Management or AMI interface unit
Substation Migration Example: Long-Term

SCADA Master
- Powerful server & workstation(s)
- Monitoring & alarming
- Substation & DA control
- Historian & trending
- OMS/AMI integration

Substation Automation
- Maximize direct connection to IEDs w/ DNP3 over IP
- IED Reclosers
- Minimized RTU
- IED Regulators
- AMI & DA collector point
- Fiber Ethernet in substation
Substation Migration Example: Phase 1

SCADA Master
- Powerful server & workstation
- Monitoring & alarming
- Substation & DA control
- Historian & trending
- OMS/AMI integration

Substation Automation
- Maximize direct connection to IEDs w/ DNP3 over IP
- IED Reclosers
- Minimized RTU
- IED Regulators
- AMI & DA collector point
- Fiber Ethernet in substation
Phased Approach

How we develop the phasing strategy depends on what is most valuable to the utility.

1. **Level**: Automation goal depends on size & programs.
2. **Current assets**: Make the most of what you have.
3. **SCADA Lite**: Consider substation level SCADA.
4. **RTU**: Balance data concentration & RTU role in short-term & long-term
5. **Phasing**: Prioritize the assets with most critical goals.
1 Starting Points
2 Why Modernize?
3 Phased Approach
4 Communication & Security
5 Next Steps
Multi-Tier Infrastructure

<table>
<thead>
<tr>
<th>Tier</th>
<th>Description</th>
<th>Speed</th>
<th>Coverage</th>
<th>Redundancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Backbone Connect offices and most substations</td>
<td>High speed 10-100+ Mbps</td>
<td>Ring</td>
<td>Critical</td>
</tr>
<tr>
<td>2</td>
<td>Backbone Extension Connects remote substations</td>
<td>Medium speed 10+ Mbps</td>
<td>Pt. – Pt.</td>
<td>Preferable</td>
</tr>
<tr>
<td>3</td>
<td>DA Network Connect field DA equipment to each other and to a collection point to the SCADA system.</td>
<td>Lower speed 50 kbps to 1 Mbps</td>
<td>Wide-area</td>
<td>Preferable</td>
</tr>
<tr>
<td>4</td>
<td>AMI Network Connect meters to each other and to a collection point.</td>
<td>Lower speed <50 kbps to 1 Mbps</td>
<td>Wide-area</td>
<td>Preferable</td>
</tr>
</tbody>
</table>

![Diagram of Multi-Tier Infrastructure](image-url)
Bandwidth Requirements

<table>
<thead>
<tr>
<th>Application</th>
<th>Use Case</th>
<th>Frequency of Use</th>
<th>Latency Target (Sec)</th>
<th>Message Size (bits)</th>
<th>Number of Devices</th>
<th>Throughput (kbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMI</td>
<td>Interval data read</td>
<td>Hourly interval data read 3x per day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Outage Notification & Restoration</td>
<td>Primarily major outages.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demand Side Management / Load Control</td>
<td>During load control events</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCADA</td>
<td>IED Monitoring & Control</td>
<td>Every 2 seconds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering</td>
<td>Data needed by direct connect to IEDs</td>
<td>1 x per week</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Video Monitoring</td>
<td>Security - sending frames on event</td>
<td>Infrequent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution Automation</td>
<td>Assumed unsolicited report by exception based on events</td>
<td>Hourly</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wi-Fi</td>
<td>Substation hotspots for field crew network access</td>
<td>A few times per day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Electric Critical Infrastructure Program

- NERC is responsible for Energy Sector, Electric Segment
- NERC Critical Infrastructure Protection (CIP)
 - Efficiently identify security threats and vulnerabilities
 - Develop policies and procedures to address these threats and vulnerabilities
 - Bolster training and education activities for owners and operators
- Currently focused on “Bulk Electric System”

<table>
<thead>
<tr>
<th>Version</th>
<th>Status</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Effective Oct. 2010</td>
<td>Allowed utilities to define CAs by a risk-based assessment</td>
</tr>
<tr>
<td>4</td>
<td>Approved by NERC Q1 2011; Awaiting FERC approval – latest comment 11/21/2011</td>
<td>Change the way Critical Assets are identified to greatly expand the number of Bulk Electric System assets (generation plants, transmission substations, etc.)</td>
</tr>
<tr>
<td>5</td>
<td>FERC required NERC submit by Q3 2012</td>
<td>Complete coverage of FERC Order 706 Critical Assets -> Bulk Electric System Cyber Assets Classifications for control centers, generation plants & transmission substations</td>
</tr>
</tbody>
</table>
Components of Security

• Encryption
 – Scrambling data so that it is unreadable to those who aren’t supposed to read it.

• Authentication
 – Verifying that the devices who want to talk to each other are allowed.

• Integrity Checking
 – Verifying that messages are not changed from sender to receiver.

• Intrusion Detection
 – Detecting if someone or something is trying to break any of the security aspects above.
 – Failed authentication – wrong password
 – Denial of service, replay attack, changed messages
DNP3 Secure Authentication Version 5

• Addressing the Issue: Securing remote devices

• Authentication: Verify correct User & Outstation
 – Addresses: Spoofing, Modification, Replay
 – Does not address: Eavesdropping & Encryption

• Unauthenticated / authenticated messages (MAC)
 – Control operations critical

• Backward tolerant & upgradable

• Multiple users & auditing (audit trail beyond standard)
Security Scalability

- Essential: Switch and fiber/microwave
- Recommended: Firewall and encryption
- NERC CIP required: MPLS tunnel

Switch
Firewall
Encryption
MPLS Tunnel
Fiber/Microwave

Connectivity
Inspection and intrusion prevention
Data obscurity and integrity checking
Non-routable (sub to control center only)
Physical connection
Agenda

1 Starting Points
2 Why Modernize?
3 Phased Approach
4 Communication & Security
5 Next Steps
Present State

- Current Programs and Assets
- Identify Business Goals
- What are Industry Trends?
- Available Staff Resources
- Current Limitations

Desired State

- Future Automation Programs
- Distribution Automation?
- Smarter Database: MDM?
- Uncover other Programs

Gap Analysis

Identify High Value Programs

Transition Plan

Automation Roadmap – AMI, DA, SCADA, MWM, AVL, Others

Communications Roadmap

Implementation

Technology Goals Accomplished!
<table>
<thead>
<tr>
<th>Programs</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMI & Beyond</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procurement/Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software/Hardware/Vendor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substation Modernization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procurement/Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software/Hardware/Vendor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MWM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procurement/Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software/Hardware/Vendor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procurement/Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procurement/Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software/Hardware/Vendor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procurement/Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software/Hardware/Vendor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modernization Overview

1. **Starting Point:** Hybrid systems, each in unique size and make-up.

2. **Benefits:**
 - Fiscal & operational benefits of improved information.
 - Foundation for voltage & switching programs

3. **Phased Approach:** Incrementally build on existing assets to maximize key programs.

4. **Communications:** Enable secure remote data access

5. **Creating a plan:** Identify the gap & create a plan that balances dollars and resources for all programs.
Questions?

Power System Engineering, Inc.

Jim Weikert
Senior Utility Automation Consultant
Direct: 608-268-3556
Email: weikertj@powersystem.org

Website: www.powersystem.org