“Everything MVEC asked for was handled with great professionalism; PSE staff were easy to work with and very knowledgeable in dealing with each of our inquiries.”

Minnesota Valley Electric Cooperative (Minnesota)
1. Return Requirements

The total cost of service for an electric utility is comprised of operating expenses and a required return. The required return can be established based on a rate of return, coverage ratio, or from a cash needs method. Regardless, the intent for a not-for-profit electric cooperative is to generate a return (a.k.a. margin) sufficient to 1) fund plant growth, 2) retire capital credits, 3) achieve or maintain an appropriate equity position, and 4) meet lender loan covenants. The table and graph summarize the Target Metric used to determine the return requirements from PSE’s studies completed from 2012 through 2016.

2. Percentage Change

While we determine the rate change “required” to recover the total revenue requirement, the actual change implemented through rate design may be different. Many different factors need to be addressed in determining the actual change: 1) the timing of the change, 2) additional changes identified over the planning horizon, and 3) the impact of the required change. Several cooperatives implemented an increase greater than the immediate need in order to reduce future increases.

Client Testimonial

“Everything went really well, the final product was very good. The project came in on time and under budget.”

Connexus (Minnesota)
Section 2: Class Cost of Service Study Results

The basic objective of a Class Cost of Service (COS) analysis is to identify the cost of providing service to each rate class based upon load and service characteristics. The cooperative’s plant investment and revenue requirements are separated into the functions of power supply, transmission, and distribution costs. These functionalized costs are further classified as energy, capacity, and customer-related costs. The following summarizes the key results of the COS studies of PSE clients.

1. Power Costs

For purposes of this report, power costs comprise capacity and energy-related costs for both power supply and transmission. The results can be substantially different between cooperatives based on the power supplier and the load characteristics of the system and/or rate classes.

<table>
<thead>
<tr>
<th>Rate Class</th>
<th>Average Value</th>
<th>Low Value</th>
<th>High Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential/Single Phase</td>
<td>7.92</td>
<td>5.12</td>
<td>9.93</td>
</tr>
<tr>
<td>Small Commercial</td>
<td>7.84</td>
<td>3.25</td>
<td>9.79</td>
</tr>
<tr>
<td>Large Power</td>
<td>7.84</td>
<td>3.77</td>
<td>12.49</td>
</tr>
<tr>
<td>Total System</td>
<td>7.13</td>
<td>4.57</td>
<td>8.92</td>
</tr>
</tbody>
</table>

Values are expressed as ¢/kWh sold

2. Distribution Consumer Costs

The consumer-related distribution costs are the result of the number and location of each customer and do not vary significantly with usage. These costs are comprised of margins, metering, and consumer accounting expenses, and often a portion of primary line and transformer related expenses. As would be expected, the result is substantially affected by density and the COS methodology employed.

<table>
<thead>
<tr>
<th>Rate Class</th>
<th>Average Value</th>
<th>Low Value</th>
<th>High Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential/Single Phase</td>
<td>$43.03</td>
<td>$11.25</td>
<td>$97.13</td>
</tr>
<tr>
<td>Small Commercial</td>
<td>$71.62</td>
<td>$18.16</td>
<td>$225.48</td>
</tr>
<tr>
<td>Large Power</td>
<td>$115.40</td>
<td>$42.48</td>
<td>$289.33</td>
</tr>
</tbody>
</table>

Values are expressed as $/consumer/month

Numbers used in the chart above are representative of the COS results rather than rate design.
3. Distribution Capacity Costs

These are the costs related to owning, operating, and maintaining the facilities required to meet the power (i.e. size) requirements of the customer. While these costs may be recovered through a demand charge or an energy charge, they are largely fixed in nature.

<table>
<thead>
<tr>
<th>Rate Class</th>
<th>Average Value</th>
<th>Low Value</th>
<th>High Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential/Single Phase</td>
<td>1.82</td>
<td>0.78</td>
<td>4.87</td>
</tr>
<tr>
<td>Small Commercial</td>
<td>1.83</td>
<td>0.81</td>
<td>4.66</td>
</tr>
<tr>
<td>Large Power</td>
<td>1.77</td>
<td>0.64</td>
<td>4.25</td>
</tr>
</tbody>
</table>

Values are expressed as ¢/kWh used

4. Unbundled Cost

Based on the studies from the last five years, the table represents the unbundled costs for the average total system and the general rate classes. While the results can be substantially different between cooperatives, power costs (including transmission) typically represent the largest share of costs associated with the cost of providing service to the system, and each rate class.

Client Testimonial

"Technical expertise and knowing the big picture of the industry is crucial. PSE did a really good job of providing options and giving us their views on what the industry is doing and where our rates should be positioned."
West River Electric Association (South Dakota)
1. Customer Charge

In rate design, the Customer Charge (a.k.a. Basic Charge, Facility Charge, Service Charge, etc.) is intended to recover the utility’s costs that vary based upon the number of customers versus peak demand or energy consumption. The COS is used to determine how much of the revenue requirement is appropriately determined as a consumer-related cost for each rate class.

In addition to considering the COS results, the utility’s actual rate design should consider other rate design objectives including customer impact, rate continuity, promotion of efficient use of resources, customer acceptance, etc. In full consideration of all these factors, the table on the right provides a comparison of the Residential Class (or equivalent) Customer Charge from PSE studies for the past five years.
We have been completing rate design, revenue requirements, COS, contract rate, large load rate, time-of-use rate, line extension policy, merger and acquisition, long-range financial forecasting, expert testimony, and other related projects for our utility clients for over 35 years. Our staff includes former utility rate analysts, a former utility CFO, and CEO, along with MBAs and CPAs. The team holds various undergraduate and advanced degrees in mathematics, accounting, business, and economics.

We regularly attend and present at industry events concerning rate design, COS, accounting, distributed generation, emerging trends, and financial matters and have conducted training seminars for domestic and international utilities. Collectively, our rates and financial planning group has over 130 years of experience working for or consulting with utilities on rate and financial matters. Over the past five years, PSE has completed approximately 100 Rate and COS studies for electric utilities, spanning 13 states.

Minnesota Office

- **Rich Macke**
 - Vice President – Economics, Rates, and Business Planning
 - 763-783-5349
 - macker@powersystem.org

- **Shaurice Moorman**
 - Manager – Rates and Financial Planning
 - 763-783-5342
 - moormans@powersystem.org

- **Nick Nelson**
 - Senior Rate and Financial Analyst
 - 763-783-5350
 - nelsonn@powersystem.org

- **Jacob Olson**
 - Utility Financial Analyst
 - 763-783-5357
 - olsonj@powersystem.org

- **Shaurice Moorman**
 - Manager – Rates and Financial Planning
 - 763-783-5342
 - moormans@powersystem.org

- **Jeff Laslie**
 - Senior Financial Analyst
 - 317-322-5906
 - lasliej@powersystem.org

- **Kathy Cobb**
 - Electric Rate Specialist
 - 317-322-5906
 - cobbk@powersystem.org

Indiana Office

- **Lance Schafer**
 - Rate and Financial Analyst
 - 859-721-2853
 - schaferl@powersystem.org

- **Marilyn Cuellar**
 - Project Coordinator
 - 763-783-5344
 - cuellarm@powersystem.org

Kansas Office

- **Elena Kanaeva-Larson**
 - Rate and Financial Analyst
 - 785-224-3065
 - larsone@powersystem.org

Kentucky Office

- **Jacob Olson**
 - Utility Financial Analyst
 - 763-783-5357
 - olsonj@powersystem.org

- **Kent Olson**
 - Utility Financial Analyst
 - 763-783-5357
 - olsonj@powersystem.org

- **Kathy Cobb**
 - Electric Rate Specialist
 - 317-322-5906
 - cobbk@powersystem.org

- **Lance Schafer**
 - Rate and Financial Analyst
 - 859-721-2853
 - schaferl@powersystem.org

Power System Engineering, Inc.

HEADQUARTERS:
Madison, WI – (866) 825-8895

ADDITIONAL OFFICE LOCATIONS:
Marietta, OH – (740) 568-9220
Prinsburg, MN – (320) 978-8022
Sioux Falls, SD – (605) 221-1770

Full-Service Consultants

Forward-Thinking
Business ■ Infrastructure ■ Technology

Solutions

www.powersystem.org